If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+150x-40000=0
a = 1; b = 150; c = -40000;
Δ = b2-4ac
Δ = 1502-4·1·(-40000)
Δ = 182500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{182500}=\sqrt{2500*73}=\sqrt{2500}*\sqrt{73}=50\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(150)-50\sqrt{73}}{2*1}=\frac{-150-50\sqrt{73}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(150)+50\sqrt{73}}{2*1}=\frac{-150+50\sqrt{73}}{2} $
| 2x+4x=5-6 | | 3x-5x-5=x-11 | | 7x-63=47+12x | | 3|x-2|-6=0 | | 3p-9=1/3(9p-27) | | 3x+(-11)=10x+14 | | 20.4y+7.2=5.1y-84.6 | | 9e-4e=(-65) | | 0.3(3z+6)+0.6=0.4(2z-4) | | 2*16/5+3c=17*16/5-21 | | 2x-4x=5-6 | | 3+b+6=18 | | 2n+2=n+16 | | -7-5x=7(-1-7x)= | | (x-1)+(6x+3)=8x-2 | | |n-3|=-5 | | -2m-1/2(-12m+14)=1+5m | | 3.2x=2.2x+9.0 | | 2d-15=8d-3 | | m¬5=14 | | 3(1+x)=-3(x-1) | | 16x+(-3)=7 | | 9+4a=23 | | 7v/5=42 | | 9+4x=1-5x+x | | 11(z+3)-4(z-3)=2(z-2)+4(z-3) | | 4-7x=2x+40 | | 5x+15x=352.50 | | 4(x-9)=3(x-2) | | 3-5a=2a+24 | | -2x=23-x | | -2(x-5)-20=10 |